CRM16E

Applications properties:

- High electrical and thermal conductivity
- Suitable mechanical properties
- Good annealing resistance

Physical properties:

Specific gravity	8,9				
Coefficient of expansion 20 to 300°C x 10 ⁻⁶	17				
Young's modulus N/mm ²	120 000				
Thermal conductivity W/(mK)	320				
Resistivity micro ohm.cm	2,15				
Electrical conductivity (%IACS)	80				
Magnetic permeability	1,01				

Alloy properties:

- Wrought Copper Chromium Zirconium structural hardening alloy
- Transformation by extrusion, forging or die stamping followed by quenching and hardening, plus cold-drawing for small diameters
- Suitable for cold forming (bending, stamping, extrusion)
- Weldable with electronic bombardment
- Suitable for hard brazing, but loss of mechanical properties
- Machinability: 20 % free-cutting brass

Applications:

Resistance welding: Welding wheels

Electric industry:

Rotor rings, connectors ...

Iron and steel industry:

Casting wheels, moulds...

Nominal composition:

Weight %

Cr	0,4-1
Zr	0,03-0,25
Cu	Balance

International standards:

ASTM: C18100-C18150

MIL 19311

RWMA class 2

SAE CA 184

BS 2874 CC 102

EN 12163, EN 12165, EN 12420, EN 12167 CW106C, CW105C

DIN 17666 WN 2.1293

DIN 17672 DIN 44759

NFA 82100

ISO 5182 A2/3 ISO 1336

Available forms, mechanical properties:

	forn	ns/proc	ess		Mechanical properties										Available forms										
Size/condition		Rods Tubes		Tensile strength		Yield strength 0,2% offset or 0,5% E.U.L. (1)		Elongation 5,65 √S	Har	Hardness		KCU ⁽¹⁾ or IZOD ⁽²⁾	Semi-finished products							par	parts				
	Extruded or forged	extruded	rgings or	Mpa ≥ : * = Mpa ≤	* = Mpa >		lmpa ≤ Ksi≥	₹%	HB	HRB	HV5	Impact strength KCU ⁽¹⁾ or IZOD	Rounds	Squares	Flats	Hexagones	Section	Tubes	Plates	Discs	Rings	Forged blanks	stamped	machined	
Discs and rings TR condition				380	55	280	41	15	130											•	•			•	

All information is intended as a general guide to performance and application suitability.

Page 2 sur 2

